Processing math: 100%

Monday, December 10, 2018

Inverse Function

The function \displaystyle f:R\to R is defined by \displaystyle f(x)={{4}^{x}}-2 .

\displaystyle (a) Find the value of \displaystyle x for which \displaystyle f(x)=0 .

\displaystyle (b)\ Find the inverse function \displaystyle {{f}^{{-1}}} , and state the domain of \displaystyle {{f}^{{-1}}} .


Solution

\displaystyle \ \ \ \ \ \ \ \ \ \ f(x)={{4}^{x}}-2

\displaystyle (a)\ \ \ \ \ f(x)=\ 0

\displaystyle \ \ \ \ \ \ \ \ {{4}^{x}}-2=0

\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ {{4}^{x}}=2

\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ {{2}^{{2x}}}=2

\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ 2x=1

\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x=\frac{1}{2}

\displaystyle (b)\ \ \ \ Let\ \ {{f}^{{-1}}}(x)=y

\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x=f(y)

\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x={{4}^{y}}-2

\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {{4}^{y}}=x+2

\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ y={{\log }_{4}}(x+2)

\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {{f}^{{-1}}}(x)={{\log }_{4}}(x+2)\ ,\ x>-2

\displaystyle \text{The domain of  }{{f}^{{-1}}}=\{x/x\in R,x>-2\}

No comments:

Post a Comment