The function $ \displaystyle f:R\to R$ is defined by $ \displaystyle f(x)={{4}^{x}}-2$ .
$ \displaystyle (a)$ Find the value of $ \displaystyle x$ for which $ \displaystyle f(x)=0$ .
$ \displaystyle (b)\ $ Find the inverse function $ \displaystyle {{f}^{{-1}}}$ , and state the domain of $ \displaystyle {{f}^{{-1}}}$ .
Solution
$ \displaystyle \ \ \ \ \ \ \ \ \ \ f(x)={{4}^{x}}-2$
$ \displaystyle (a)\ \ \ \ \ f(x)=\ 0$
$ \displaystyle \ \ \ \ \ \ \ \ {{4}^{x}}-2=0$
$ \displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ {{4}^{x}}=2$
$ \displaystyle \ \ \ \ \ \ \ \ \ \ \ \ {{2}^{{2x}}}=2$
$ \displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ 2x=1$
$ \displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x=\frac{1}{2}$
$ \displaystyle (b)\ \ \ \ Let\ \ {{f}^{{-1}}}(x)=y$
$ \displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x=f(y)$
$ \displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x={{4}^{y}}-2$
$ \displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {{4}^{y}}=x+2$
$ \displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ y={{\log }_{4}}(x+2)$
$ \displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {{f}^{{-1}}}(x)={{\log }_{4}}(x+2)\ ,\ x>-2$
$ \displaystyle \text{The domain of }{{f}^{{-1}}}=\{x/x\in R,x>-2\}$
No comments:
Post a Comment