Processing math: 100%

Monday, January 21, 2019

Sines Law , Componendo and Dividendo

ABC is a triangle having  BC = 2 AB . Bisect  BC  in  D  and  BD  in  E .
Prove that  AD  bisects  \displaystyle \angle \ CAE.

Solution

\displaystyle \text{Let}\ AB=2x

\displaystyle \ \ \ \therefore \ BC=4x\ \ \ \left( {\because \ BC=2AB} \right)

\displaystyle \text{Bisect}\ BC\ \ \text{in}\ \ D\ \ \text{and}\ \ BD\ \ \text{in}\ \ E\ .\ \ \left( {\text{Given}} \right) 

\displaystyle BD=DC=2x\ and\ \ BE=ED=x

By the law of sines ,

\displaystyle \frac{{AB}}{{\sin \gamma }}=\frac{{BC}}{{\sin \left( {\phi +\beta +\alpha } \right)}} 

\displaystyle \frac{{2x}}{{\sin \left( {\theta -\alpha } \right)}}=\frac{{4x}}{{\sin \left( {\theta +\alpha } \right)}}

\displaystyle \frac{{\sin \left( {\theta +\alpha } \right)}}{{\sin \left( {\theta -\alpha } \right)}}=2\ \ \ \ ...........(1)

\displaystyle \frac{{BE}}{{\sin \phi }}=\frac{{AB}}{{\sin \lambda }}

\displaystyle \frac{x}{{\sin \left( {\theta -\beta } \right)}}=\frac{{2x}}{{\sin \left( {\theta +\beta } \right)}}

\displaystyle \frac{{\sin \left( {\theta +\beta } \right)}}{{\sin \left( {\theta -\beta } \right)}}=2\ \ \ \ ...........(2)

\displaystyle \text{From}\ (1)\ \text{and}\ (2)\ ,

\displaystyle \frac{{\sin \left( {\theta +\alpha } \right)}}{{\sin \left( {\theta -\alpha } \right)}}=\frac{{\sin \left( {\theta +\beta } \right)}}{{\sin \left( {\theta -\beta } \right)}}

\displaystyle \text{By}\ \text{Componendo}\ \And \ \text{Dividendo}\ ,

\displaystyle \frac{{\sin \left( {\theta +\alpha } \right)+\sin \left( {\theta -\alpha } \right)}}{{\sin \left( {\theta +\alpha } \right)-\sin \left( {\theta -\alpha } \right)}}=\frac{{\sin \left( {\theta +\beta } \right)+\sin \left( {\theta -\beta } \right)}}{{\sin \left( {\theta +\beta } \right)-\sin \left( {\theta -\beta } \right)}}

\displaystyle \frac{{2\sin \theta \cos \alpha }}{{2\cos \theta \sin \alpha }}=\frac{{2\sin \theta \cos \beta }}{{2\cos \theta \sin \beta }}

\displaystyle \ \ \ \ \ \ \ \ \ \ \cot \alpha =\cot \beta

\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \alpha =\beta

\displaystyle \therefore \ AD\ \text{bisects}\ \angle \ CAE.


2 comments:

  1. ဆရာရေ စာတွေဆက်ရေးပါဦးဗျာ ... မျှော်လင့်နေပါတယ်

    ReplyDelete
  2. ဟုတ်ကဲ့ပါဆရာ

    ReplyDelete