Processing math: 100%

Monday, January 21, 2019

Solving problem with compound angle formula

\displaystyle A+B+C={{180}^{\circ }}

\displaystyle 3\sin A+4\cos B=6

\displaystyle 3\cos A+4\sin B=\sqrt{{13}}

\displaystyle \sin x=?

\displaystyle \text{Solution}

\displaystyle A+B+C={{180}^{\circ }} 

\displaystyle 3\sin A+4\cos B=6 

\displaystyle {{\left( {3\sin A+4\cos B} \right)}^{2}}={{6}^{2}}

\displaystyle 9{{\sin }^{2}}A+24\sin A\cos B+16{{\cos }^{2}}B=36\ ..........(1)

\displaystyle 3\cos A+4\sin B=\sqrt{{13}}

\displaystyle {{\left( {3\cos A+4\sin B} \right)}^{2}}={{\left( {\sqrt{{13}}} \right)}^{2}} 

\displaystyle 9{{\cos }^{2}}A+24\cos A\sin B+16{{\sin }^{2}}B=13\ ............(2) 

\displaystyle (1)+(2)\Rightarrow \

\displaystyle 9\left( {{{{\sin }}^{2}}A+{{{\cos }}^{2}}A} \right)+24\left( {\sin A\cos B+\cos A\sin B} \right)+16\left( {{{{\sin }}^{2}}B+{{{\cos }}^{2}}B} \right)=49

\displaystyle \ 9+24\sin \left( {A+B} \right)+16=49

\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ 24\sin \left( {A+B} \right)=24

\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \sin \left( {A+B} \right)=1

\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \sin \left( {{{{180}}^{\circ }}-C} \right)=1

\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \therefore \ \ \sin C=1

No comments:

Post a Comment