Monday, December 10, 2018

R(1)

If $ \displaystyle \alpha $ and $ \displaystyle \beta $ are the roots of the equations $ \displaystyle {{x}^{2}}+px+q=0$ and $\displaystyle {{x}^{{2n}}}+{{p}^{n}}{{x}^{n}}+{{q}^{n}}=0$ , where $ \displaystyle n$ is an even integer . Prove that $ \displaystyle \frac{\alpha }{\beta }$ and $ \displaystyle \frac{\beta }{\alpha }$ are the roots of the equation $ \displaystyle {{x}^{n}}+1+{{(x+1)}^{n}}=0$ .

Solution

$ \displaystyle {{x}^{2}}+px+q=0$

$ \displaystyle \alpha \ \ \text{and  }\beta \ \ \ \text{are the roots of the equation }\text{.}$

$ \displaystyle p=-(\alpha +\beta )\ \ \text{and   }q=\alpha \beta $

$ \displaystyle {{x}^{{2n}}}+{{p}^{n}}{{x}^{n}}+{{q}^{n}}=0$

$ \displaystyle \alpha \ \ \text{and  }\beta \ \ \ \text{are the roots of the equation }\text{.}$

$ \displaystyle {{\alpha }^{{2n}}}+{{p}^{n}}{{\alpha }^{n}}+{{q}^{n}}=0\ \ \ \text{and   }{{\beta }^{{2n}}}+{{p}^{n}}{{\beta }^{n}}+{{q}^{n}}=0\text{ }$

$ \displaystyle {{\alpha }^{{2n}}}+{{p}^{n}}{{\alpha }^{n}}={{\beta }^{{2n}}}+{{p}^{n}}{{\beta }^{n}}$

$ \displaystyle {{\alpha }^{{2n}}}-{{\beta }^{{2n}}}={{p}^{n}}({{\beta }^{n}}-{{\alpha }^{n}})$

$ \displaystyle ({{\alpha }^{n}}-{{\beta }^{n}})({{\alpha }^{n}}+{{\beta }^{n}})={{(\alpha +\beta )}^{n}}({{\beta }^{n}}-{{\alpha }^{n}})\ \left[ {\because n\ \text{is even integer}} \right]$

$ \displaystyle {{\alpha }^{n}}+{{\beta }^{n}}=-{{(\alpha +\beta )}^{n}}$

$ \displaystyle \text{Let  }f(x)={{x}^{n}}+1+{{(x+1)}^{n}}$

$ \displaystyle \ \ \ \ \ f(\frac{\alpha }{\beta })={{(\frac{\alpha }{\beta })}^{n}}+1+{{(\frac{\alpha }{\beta }+1)}^{n}}$

$ \displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\frac{{{{\alpha }^{n}}+{{\beta }^{n}}+{{{(\alpha +\beta )}}^{n}}}}{{{{\beta }^{n}}}}=0$

$ \displaystyle \ \ \ \ \ f(\frac{\beta }{\alpha })={{(\frac{\beta }{\alpha })}^{n}}+1+{{(\frac{\beta }{\alpha }+1)}^{n}}$

$\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\frac{{{{\beta }^{n}}+{{\alpha }^{n}}+{{{(\alpha +\beta )}}^{n}}}}{{{{\alpha }^{n}}}}=0$

$ \displaystyle \therefore \frac{\alpha }{\beta }\ \ \text{and  }\frac{\beta }{\alpha }\ \ \text{are the roots of the equation }{{x}^{n}}+1+{{(x+1)}^{n}}=0.$

1 comment:

  1. quadractic equation and vieta formula စသျဖင္​့​ေပါ့ ဆရာ tital ​ေလးကို post ကို ကိုယ္​စားျပဳမယ္​့ နာမည္​​ေပးရင္​ ပို​ေကာင္​းမလား ဆရာ အခု​ေခါင္​းစဥ္​က ဘာဆိုလိုမွန္​း မတိက်ဘူး​ေလ

    ReplyDelete