Processing math: 100%

Thursday, January 17, 2019

The distance between vertex and orthocentre of a triangle

In \displaystyle \Delta \ ABC,\ \angle A={{60}^{\circ }},\ BC=5 ,then find the distance of the vertex A from the orthocentre of  \displaystyle \Delta \ ABC\ .

Solution


\displaystyle BF=5\sin \theta \ \ \ ,\ \ CF=5\cos \theta  

\displaystyle GF=5\sin \theta \tan {{30}^{\circ }}

\displaystyle \ \ \ \ \ \ =\frac{5}{{\sqrt{3}}}\sin \theta  

\displaystyle \text{By}\ \text{the}\ \text{law}\ \text{of}\ \text{sines}\ , 

\displaystyle \frac{{AG}}{{\sin {{{30}}^{\circ }}}}=\frac{{CG}}{{\sin \ ({{{60}}^{\circ }}-\theta )}} 

\displaystyle \ \ \ 2AG=\frac{{CF-GF}}{{\sin {{{60}}^{\circ }}\cos \theta -\cos {{{60}}^{\circ }}\sin \theta }}

\displaystyle \ \ \ 2AG=\frac{{5\cos \theta -\frac{5}{{\sqrt{3}}}\sin \theta }}{{\frac{{\sqrt{3}}}{2}\cos \theta -\frac{1}{2}\sin \theta }}

\displaystyle \ \ \ \ \ AG=\frac{{\frac{5}{{\sqrt{3}}}(\sqrt{3}\cos \theta -\sin \theta )}}{{\sqrt{3}\cos \theta -\sin \theta }}

\displaystyle \ \ \therefore \ AG=\frac{5}{{\sqrt{3}}}

No comments:

Post a Comment