
Solution
\displaystyle \text{Area}\ \text{of}\ \text{sector}\ VSR\ =\ \text{Area}\ \text{of}\ \text{sector}\ WRT\ =\ \frac{1}{2}\times {{2}^{2}}\times \frac{\pi }{3}
\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\frac{{2\pi }}{3}
\displaystyle \therefore \ The\ area\ of\ the\ region\ =\ \alpha (\Delta UVW)\ -\ [\text{Area}\ \text{of}\ \text{sector}\ VSR\ +\ \text{Area}\ \text{of}\ \text{sector}\ WRT\ ]
\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\ (4\sqrt{3}-\frac{{4\pi }}{3})\ \ \text{sq}\ \ \text{units}
*Note
No comments:
Post a Comment