Solution
$ \displaystyle \text{Let}\ PC=x\ \ ,\ DQ=y\ \ \ ,\ \ QE=z$
$ \displaystyle \text{In}\ \text{rt}\ \Delta OCP\ ,\ \ O{{P}^{2}}=O{{C}^{2}}+P{{C}^{2}}$
$ \displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {{(a+b)}^{2}}={{(a-b)}^{2}}+{{x}^{2}}$
$ \displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {{x}^{2}}=4ab$
$ \displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x=2\sqrt{{ab}}$
$ \displaystyle \text{In}\ \text{rt}\ \Delta ODQ\ ,\ \ {{y}^{2}}=O{{Q}^{2}}-O{{D}^{2}}$
$ \displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {{y}^{2}}={{(a+c)}^{2}}-{{(a-c)}^{2}}$
$ \displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {{y}^{2}}=4ac$
$ \displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ y=2\sqrt{{ac}}$
$ \displaystyle \text{In}\ \text{rt}\ \Delta QEP\ ,\ \ \ {{z}^{2}}=Q{{P}^{2}}-P{{E}^{2}}$
$ \displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {{z}^{2}}={{(b+c)}^{2}}-{{(b-c)}^{2}}$
$ \displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {{z}^{2}}=4bc$
$ \displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ z=2\sqrt{{bc}}$
$ \displaystyle \ \ \ \ \ \ \ \ \ \ \ x=y+z$
$ \displaystyle \ \ \ \ 2\sqrt{{ab}}=2\sqrt{{ac}}+2\sqrt{{bc}}$
$ \displaystyle \ \ \ \ \ \sqrt{{ab}}=\sqrt{{ac}}+\sqrt{{bc}}$
$ \displaystyle \ \ \ \ \ \frac{{\sqrt{{ab}}}}{{\sqrt{{abc}}}}=\frac{{\sqrt{{ac}}}}{{\sqrt{{abc}}}}+\frac{{\sqrt{{bc}}}}{{\sqrt{{abc}}}}$
$ \displaystyle \ \ \ \ \ \ \ \ \frac{1}{{\sqrt{c}}}=\frac{1}{{\sqrt{b}}}+\frac{1}{{\sqrt{a}}}$
$ \displaystyle \ \therefore \ \ \ \frac{1}{{\sqrt{a}}}+\frac{1}{{\sqrt{b}}}=\frac{1}{{\sqrt{c}}}$
*Note
If two circles are tangent internally or externally , the line containing their centres also contains the point of tangency .
No comments:
Post a Comment