Given : In circle O , $ \displaystyle AB=\sqrt{{41}}\ ,\ AC=5\ ,\ BC=8$ and $ \displaystyle A{{A}^{'}}$ is a diameter and as shown in figure .
Find : area of triangle $ \displaystyle {{A}^{'}}BC$ .
Solution
$ \displaystyle AB=\sqrt{{41}}\ ,\ AC=5\ ,\ BC=8$
$ \displaystyle \text{Draw}\ {{A}^{'}}D\bot BC.$
$ \displaystyle A{{B}^{2}}+{{A}^{'}}{{B}^{2}}=A{{C}^{2}}+{{A}^{'}}{{C}^{2}}$
$ \displaystyle 41+{{A}^{'}}{{D}^{2}}+B{{D}^{2}}=25+{{A}^{'}}{{D}^{2}}+D{{C}^{2}}$
$ \displaystyle D{{C}^{2}}-B{{D}^{2}}=16$
$ \displaystyle 8\ (DC-BD)=16$
$ \displaystyle \ \ \ \ \ DC-BD=2$
$ \displaystyle \therefore \ BD=3\ \ ,\ \ DC=5$
$ \displaystyle \text{By}\ \text{the}\ \text{law}\ \text{of}\ \text{cosines}\ ,$
$ \displaystyle \cos \theta =\frac{{A{{B}^{2}}+B{{C}^{2}}-A{{C}^{2}}}}{{2AB.BC}}$
$ \displaystyle \ \ \ \ \ \ \ =\frac{{41+64-25}}{{16\sqrt{{41}}}}$
$ \displaystyle \ \ \ \ \ \ \ =\frac{5}{{\sqrt{{41}}}}$
$ \displaystyle \sin ({{90}^{\circ }}-\theta )=\frac{5}{{\sqrt{{41}}}}\ \ \ \ \ \left[ {\because \sin ({{{90}}^{\circ }}-\theta )=\cos \theta } \right]$
$ \displaystyle \ \ \ \ \ \ \ \ \ \ \frac{{{{A}^{'}}D}}{{{{A}^{'}}B}}=\frac{5}{{\sqrt{{41}}}}\ $
$ \displaystyle \ \ \ \ \ \ \ \ \ \ \frac{{{{A}^{'}}{{D}^{2}}}}{{{{A}^{'}}{{B}^{2}}}}=\frac{{25}}{{41}}$
$ \displaystyle \ \ \ \ \ \frac{{{{A}^{'}}{{D}^{2}}}}{{{{A}^{'}}{{D}^{2}}+9}}=\frac{{25}}{{41}}$
$ \displaystyle 41\ {{A}^{'}}{{D}^{2}}=25\ {{A}^{'}}{{D}^{2}}+\ 225$
$ \displaystyle \ \ \ {{A}^{'}}{{D}^{2}}=\frac{{225}}{{16}}$
$ \displaystyle \ \ \ \ {{A}^{'}}D=\frac{{15}}{4}$
$ \displaystyle \therefore \ \alpha \ (\ \Delta \ {{A}^{'}}BC\ )=\frac{1}{2}\ \times \ BC\ \times \ {{A}^{'}}D$
$ \displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\frac{1}{2}\ \times \ 8\ \times \ \frac{{15}}{4}$
$ \displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =15\ \ \text{sq}\ \text{units}$
No comments:
Post a Comment