\displaystyle \Delta ABC is a \displaystyle {{30}^{\circ }}-{{60}^{\circ }} right triangle with \displaystyle \angle A={{30}^{\circ }}\ ,\ \angle B={{60}^{\circ }}. If P is a Fermat point of \displaystyle \Delta ABC , prove that AP , BP , CP are in a G.P.
Solution
\displaystyle \text{In}\ \Delta FCB\ \text{and}\ \Delta ACD\ ,
\displaystyle \ \ \ \ \ FC\ =\ AC
\displaystyle \ \ \ \ \ CB=CD
\displaystyle \angle FCB=\angle ACD
\displaystyle \Delta FCB\cong \Delta ACD\ \ (S.A.S)
\displaystyle \angle FBC=\angle ADC=\beta
\displaystyle \therefore \ CDBP\ \text{is}\ \text{cyclic}\ .
\displaystyle \angle PCB=\angle PDB=\theta
\displaystyle AB\parallel \ CD\ \ (\because \ \angle BCD=\angle ABC)
\displaystyle \therefore \ \angle ADC=\angle BAD\ \ (\because \text{alternate}\ \angle \text{s})
\displaystyle \text{By}\ \text{the}\ \text{law}\ \text{of}\ \text{sines}\ ,
\displaystyle \ \ \ \ \ \frac{{BP}}{{\sin \beta }}=\frac{{AP}}{{\sin \theta }}
\displaystyle \ \ \ \ \ \ \ \frac{{BP}}{{AP}}=\frac{{\sin \beta }}{{\sin \theta }}\ \ \ \ \ \ \ ........(1)
\displaystyle \ \ \ \ \ \ \frac{{CP}}{{\sin \beta }}=\frac{{BP}}{{\sin \theta }}
\displaystyle \ \ \ \ \ \ \ \frac{{CP}}{{BP}}=\frac{{\sin \beta }}{{\sin \theta }}\ \ \ \ \ \ \ ........(2)
\displaystyle \text{From}\,(1)\ \ \text{and}\ (2)\ ,\ \ \frac{{BP}}{{AP}}=\ \frac{{CP}}{{BP}}
\displaystyle \therefore \ AP,BP,CP\ \text{are}\ \text{in}\ \text{a}\ G.P.\
No comments:
Post a Comment