\displaystyle \text{Proof : Join }MN\text{ and }QR.Proof : Join MN and QR.
\displaystyle \ \ \ \ \ \ \ \ \ \ \theta =\beta \ \ (\text{angle between tangent and chord = } θ=β (angle between tangent and chord =
\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \text{angle in the alternate segment )} angle in the alternate segment )
\displaystyle \ \ \ \ \ \ \ \ \ \ \phi =\gamma \ \ \ \ \text{( same arc }QN\ ) ϕ=γ ( same arc QN )
\displaystyle \ \ \ \ \ \ \ \ \ \ \text{In }\Delta \ PQR,\ \ \ \theta +\phi =\Omega In Δ PQR, θ+ϕ=Ω
\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \beta +\gamma =\Omega β+γ=Ω
\displaystyle \ \ \ \ \ \ \ \ \ \ \Omega =\alpha \text{ }\ (\text{angle between tangent and chord = } Ω=α (angle between tangent and chord =
\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \text{angle in the alternate segment )} angle in the alternate segment )
\displaystyle \ \ \ \ \ \ \ \ \ \ \beta +\gamma =\alpha β+γ=α
\displaystyle \ \ \ \ \ \ \ \ \ \therefore \ MQ\ \ \text{bisects }\angle PMR.
No comments:
Post a Comment