$ \displaystyle \text{Proof : Join }MN\text{ and }QR.$
$ \displaystyle \ \ \ \ \ \ \ \ \ \ \theta =\beta \ \ (\text{angle between tangent and chord = }$
$ \displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \text{angle in the alternate segment )}$
$ \displaystyle \ \ \ \ \ \ \ \ \ \ \phi =\gamma \ \ \ \ \text{( same arc }QN\ )$
$ \displaystyle \ \ \ \ \ \ \ \ \ \ \text{In }\Delta \ PQR,\ \ \ \theta +\phi =\Omega $
$ \displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \beta +\gamma =\Omega $
$ \displaystyle \ \ \ \ \ \ \ \ \ \ \Omega =\alpha \text{ }\ (\text{angle between tangent and chord = }$
$ \displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \text{angle in the alternate segment )}$
$ \displaystyle \ \ \ \ \ \ \ \ \ \ \beta +\gamma =\alpha $
$ \displaystyle \ \ \ \ \ \ \ \ \ \therefore \ MQ\ \ \text{bisects }\angle PMR.$
No comments:
Post a Comment