ABCD is a square and E is the intersection point of the diagonals . If N is any point on AE , show that \displaystyle A{{B}^{2}}-B{{N}^{2}}=AN.NC .
Solution
\displaystyle \text{Let}\ AB=BC=x\ \ \text{and}\ \ NE=y
\displaystyle \Delta \ BCE\ \ \text{is}\ \ {{45}^{\circ }}\text{-}\ {{45}^{\circ }}\ rt\ \Delta .
\displaystyle \therefore \ BE=CE=\frac{x}{{\sqrt{2}}}
\displaystyle A{{B}^{2}}-B{{N}^{2}}={{x}^{2}}-\left( {B{{E}^{2}}+N{{E}^{2}}} \right)
\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ={{x}^{2}}-\left( {{{{\left( {\frac{x}{{\sqrt{2}}}} \right)}}^{2}}+{{y}^{2}}} \right)
\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ={{x}^{2}}-\frac{{{{x}^{2}}}}{2}-{{y}^{2}}
\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\frac{1}{2}{{x}^{2}}-{{y}^{2}}
\displaystyle AN.NC=\left( {AE-NE} \right)\left( {CE+NE} \right)
\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ =\left( {\frac{x}{{\sqrt{2}}}-y} \right)\left( {\frac{x}{{\sqrt{2}}}+y} \right)
\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ =\frac{1}{2}{{x}^{2}}-{{y}^{2}}
\displaystyle \therefore \ A{{B}^{2}}-B{{N}^{2}}=AN.NC
No comments:
Post a Comment