Given : $ \displaystyle a,b$ are positive real numbers such that $ \displaystyle a\sqrt{a}+b\sqrt{b}=183$ and $ \displaystyle a\sqrt{b}+b\sqrt{a}=182$ .
Find : $ \displaystyle \frac{9}{5}\ (\ a+b\ )$
Solution
$ \displaystyle a\sqrt{a}+b\sqrt{b}=183$
$ \displaystyle {{(\ \sqrt{a}\ )}^{3}}+{{(\ \sqrt{b}\ )}^{3}}=183$
$ \displaystyle {{(\ \sqrt{a}+\sqrt{b}\ )}^{3}}-3\sqrt{{ab}}(\ \sqrt{a}+\sqrt{b}\ )=183\ ........(1)$
$ \displaystyle a\sqrt{b}+b\sqrt{a}=182$
$ \displaystyle \sqrt{{ab}}\ (\ \sqrt{a}+\sqrt{b}\ )=182\ \ .............(2)$
$ \displaystyle \text{From}\ (1)\ \text{and}\ (2),$
$ \displaystyle {{(\ \sqrt{a}+\sqrt{b}\ )}^{3}}-546=183$
$ \displaystyle \ \ \ \ \ \ \ \ {{(\ \sqrt{a}+\sqrt{b}\ )}^{3}}=729$
$ \displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \sqrt{a}+\sqrt{b}=9\ \ \ .............(3)$
$ \displaystyle \text{From}\ (2)\ \text{and}\ (3),$
$ \displaystyle \ \ \ \ \ \ \ \ \ \ \ \sqrt{{ab}}=\frac{{182}}{9}$
$ \displaystyle {{(\ \sqrt{a}+\sqrt{b}\ )}^{2}}=81\ \ \ \ \left[ {By\ (3)} \right]$
$ \displaystyle a+b+2\sqrt{{ab}}=81$
$ \displaystyle \ \ a+b+\frac{{364}}{9}=81$
$ \displaystyle \ a+b=\frac{{365}}{9}=73\times \frac{5}{9}$
$ \displaystyle \therefore \ \ \frac{9}{5}\ (\ a+b\ )=73$
No comments:
Post a Comment