Find the volume of the largest right circular cone that can be inscribed in a sphere of radius 3 .
Solution
$ \displaystyle \text{Volume}\ \text{of}\ \text{right}\ \text{circular}\ \text{cone}\ =V=\frac{1}{3}\pi {{x}^{2}}(3+y)$
$ \displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\frac{1}{3}\pi {{x}^{2}}(\ 3+\sqrt{{9-{{x}^{2}}}}\ )$
$ \displaystyle \frac{{dV}}{{dx}}=\frac{1}{3}\pi \left[ {{{x}^{2}}.\frac{1}{2}{{{(9-{{x}^{2}})}}^{{-\frac{1}{2}}}}(-2x)+(\ 3+\sqrt{{9-{{x}^{2}}}}\ ).2x} \right]$
$ \displaystyle \ \ \ \ \ =\frac{1}{3}\pi \left[ {-\frac{{{{x}^{3}}}}{{\sqrt{{9-{{x}^{2}}}}}}+6x+2x\sqrt{{9-{{x}^{2}}}}} \right]$
$ \displaystyle \ \ \ \ \ =\frac{1}{3}\pi \left[ {6x+\frac{{-{{x}^{3}}+18x-2{{x}^{3}}}}{{\sqrt{{9-{{x}^{2}}}}}}} \right]$
$ \displaystyle \ \ \ \ \ =\frac{1}{3}\pi \left[ {6x+\frac{{18x-3{{x}^{3}}}}{{\sqrt{{9-{{x}^{2}}}}}}} \right]$
$ \displaystyle \ \ \ \ \ =\pi \left[ {2x+\frac{{6x-{{x}^{3}}}}{{\sqrt{{9-{{x}^{2}}}}}}} \right]$
$ \displaystyle \text{For}\ \text{stationary}\ \text{value}\ ,\ \frac{{dV}}{{dx}}=0$
$ \displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \pi \left[ {2x+\frac{{6x-{{x}^{3}}}}{{\sqrt{{9-{{x}^{2}}}}}}} \right]=0$
$ \displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \frac{{6x-{{x}^{3}}}}{{\sqrt{{9-{{x}^{2}}}}}}=-2x$
$ \displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 6-{{x}^{2}}=-2\sqrt{{9-{{x}^{2}}}}$
$ \displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 36-12{{x}^{2}}+{{x}^{4}}=36-4{{x}^{2}}$
$ \displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {{x}^{4}}-8{{x}^{2}}=0$
$ \displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {{x}^{2}}=8$
$ \displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x=\sqrt{8}$
$ \displaystyle \frac{{{{d}^{2}}V}}{{d{{x}^{2}}}}=\pi \left[ {2+\frac{{\sqrt{{9-{{x}^{2}}}}(6-3{{x}^{2}})-(6x-{{x}^{3}})\frac{1}{2}{{{(9-{{x}^{2}})}}^{{-\frac{1}{2}}}}(-2x)}}{{9-{{x}^{2}}}}} \right]$
$ \displaystyle \ \ \ \ \ \ =\pi \left[ {2+\frac{{(9-{{x}^{2}})(6-3{{x}^{2}})+{{x}^{2}}(6-{{x}^{2}})}}{{(9-{{x}^{2}})\sqrt{{9-{{x}^{2}}}}}}} \right]$
$ \displaystyle \text{when}\ x=\sqrt{8}\ ,\ \frac{{{{d}^{2}}V}}{{d{{x}^{2}}}}=\pi (2-18-16)=-32\pi <0\ $
$ \displaystyle V\ \text{is}\ \text{maximum}\ \text{value}\ \text{when}\ x=\sqrt{8}\ .$
$ \displaystyle \text{The}\ \text{volume}\ \text{of}\ \text{the}\ \text{largest}\ \text{right}\ \text{circular}\ \text{cone}\ =V=\frac{1}{3}\times \frac{{22}}{7}\times 32$
$ \displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\frac{{704}}{{21}}\ \text{cube}\ \text{units}$
Casino games - DrMCD
ReplyDeleteLearn 제주 출장샵 how 군포 출장안마 the world's top casino games providers are 제주도 출장마사지 playing and see which 구리 출장샵 ones are the best! Get started 서귀포 출장안마 right here. 1. Lucky Dog Casino: €200 Welcome Bonus! · 2. Vegas