Processing math: 5%

Thursday, January 17, 2019

Solving problem with Sines Law and Cosine Law

In triangle ABC, the lengths of the three sides of the triangle are \displaystyle a\ cm,b\ cm\ and\ c\ cm . It is given that \displaystyle \frac{{{{a}^{2}}+{{b}^{2}}}}{{{{c}^{2}}}}=2016. Find the value of \displaystyle \frac{{\cot C}}{{\cot A+\cot B}} .

Solution

\displaystyle \frac{{{{a}^{2}}+{{b}^{2}}}}{{{{c}^{2}}}}=2016 

\displaystyle {{a}^{2}}+{{b}^{2}}=2016\ {{c}^{2}} 

\displaystyle {{a}^{2}}+{{b}^{2}}-{{c}^{2}}=2015\ {{c}^{2}} 

\displaystyle 2ab\cos C=2015\ {{c}^{2}}\ \ (\because \ \ \cos C=\frac{{{{a}^{2}}+{{b}^{2}}-{{c}^{2}}}}{{2ab}})

\displaystyle \ \ \ \ \ \ \cos C=\frac{{2015\ {{c}^{2}}}}{{2ab}} 

\displaystyle \frac{{\cot C}}{{\cot A+\cot B}}=\frac{{\frac{{\cos C}}{{\sin C}}}}{{\frac{{\cos A}}{{\sin A}}+\frac{{\cos B}}{{\sin B}}}}

\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\frac{{\frac{{\cos C}}{{\sin C}}}}{{\frac{{\sin B\cos A+\cos B\sin A}}{{\sin A\sin B}}}} 

\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\frac{{\cos C}}{{\sin C}}\times \frac{{\sin A\sin B}}{{\sin (B+A)}} 

\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\frac{{\cos C}}{{\sin C}}\times \frac{{\sin A\sin B}}{{\sin ({{{180}}^{\circ }}-C)}} 

\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\frac{{\cos C}}{{\sin C}}\times \frac{{\sin A\sin B}}{{\sin C}}

\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\cos C\times \frac{{\sin A}}{{\sin C}}\times \frac{{\sin B}}{{\sin C}}

\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\frac{{2015\ {{c}^{2}}}}{{2ab}}\times \frac{a}{c}\times \frac{b}{c}\ \ (\because \ \frac{a}{{\sin A}}=\frac{b}{{\sin B}}=\frac{c}{{\sin C}}) 

\displaystyle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =\frac{{2015}}{2}

No comments:

Post a Comment